3D プリンターを利用したハイブリッドロケットの固体燃料に関する研究 A study on solid fuel for hybrid rocket with using 3D printer

○山﨑貴也¹, 押切快¹, 斎藤寛凪¹, 髙橋晶世², 髙橋賢一² *Takaya Yamazaki¹, Oshikiri Kai¹, Hirona Saitou¹, Akiyo Takahashi², Kenichi Takahashi²

Abstract: There is few practical using of hybrid rockets. The reasons for this are the slow fuel recession rate and low specific impulse. In this study, we will use a 3D printer to study metal additions to improve fuel gas generation and specific impulse.

1. 研究背景

ハイブリッドロケットは、固体燃料と液体酸化剤の 相が異なる2種類の推進剤を用いるロケットである. ハイブリッドロケットは燃料が爆発する心配がなく, また扱う液体が1種類であるため、液体ロケットや固 体ロケットに比べて安全で小型化が可能であり、その ため安価に製造できるという特徴がある.^[1]しかし, ハイブリッドロケットは実用例が少ない.^[2]その理由 として、燃料後退速度が遅く、比推力も低いことが挙 げられる.^[3]

そこで 3D プリンターを用い固体燃料を製作しよう と考えた. 3D プリンターの利点は,試作工程の効率 の向上や今まで出来なかった複雑な内部形状の製作 が可能になることが挙げられる.この研究においての 3D プリンターの利点は燃焼表面積を変化させやすい ことである.それにより,高充填率の固体燃料が製作 可能だと考えられる.現在ほとんどの航空宇宙産業で 使われる材料 3D プリンターでも扱えるようになって きた.^[4]3D プリンターを利用し,グレイン内の形状を 複雑にすることによって燃料ガス発生量向上,また比 推力を向上させるためには金属添加が考えられる.

本研究では 3D プリンターを用いて, 金属を添加した 固体燃料に関する研究を進める.

2. 実験装置

本研究では 3D プリンターで印刷するために, CAD には Autodesk Fusion 360 を使用し, 印刷ソフトには CURE を使用した. 実験装置の簡易図を Figure 1 に示 す.

Figure 1. Schematic diagram of the experimental setup

3. 実験方法

Autodesk Fusion 360 のアプリケーションを使用し, 固体燃料のモデルを製作し, CURE を使用し印刷する. 本研究では, グレイン形状を星形で統一し, 螺旋形状 のピッチの異なる3種類を製作した.

4. 実験結果及び考察

金属添加の NASA CEA^[5]による比推力に関するグラ フを Figure 2 に示す. O₂, N₂O は 300K, H₂O は 500K で解析を行った. また, H₂O を 500K で行った理由 は過熱水蒸気で使用することを想定して解析した.

Figure 2. Specific impulse

製作したグレイン形状モデルを Figure 3 に示す. それ ぞれのモデルを左から順に No.1 Model, No.2 Model, No.3 Model とする.

Table 1.2 にフィラメントで製作した固体燃料の解析 結果を示す.充填密度で重さが変わるため,それによ る燃料変化を今後検討するため,充填密度を変えて行 った.

	No.1	No.2	No.3
体積[cm]]	11.13	12.21	13.56
質量[g]	12.10	11.38	10.27
密度[g/cm³]	1.110	0.757	0.964
内部表面積 [cm ²]	68.9	45.8	31.9

Table 1. Filling density20%

Table 2. Filling density 100%

	No.1	No.2	No.3
体積[cm³]	11.39	13.01	13.83
質量[g]	13.56	15.93	16.91
密度[g/cm]	1.209	1.230	1.227
内部表面積 [cm ²]	68.9	45.8	31.9

Figure 2 より, O_2 の数値の変化が1番大きいことが分 かる. *O/F* が 1~1.5 の間で比べると, *Isp/g* が O_2 は 16.5, N₂O は 10.1 増加した. しかし H₂O は *Isp/g* が-1.41 と減少した. Table 1.2 より, 充填密度 20%の時 は内部表面積も密度も No1 が一番大きい結果となっ たが, 充填密度 100%の時は密度が一番小さい結果と なった.

- 5. 結論と今後の課題
- ・内部表面積が増えるような新たな内部形状の設計 を行う.
- ・並行して比推力を向上するために金属添加物の選 定を進める.
- フィラメントだけの燃料と金属添加した燃料を比べ、解析する.

参考文献

[1] 片野田 洋, 永田 晴紀:「ハイブリッドロケットの c* 効率について」, 鹿児島大学工学部研究報告第58 号, 2016

[2] 原田潤一, 那賀川一郎:「ワックス系燃料ハイブ リッドロケットにおける燃焼効率改善に関する研究」, 東海大学紀要工学部, Vol.55, No.1, pp.33-41, 2015

[3] 本目将大,内島圭介,舘山哲也,西野沙也加,藤方優樹,高野敦,船見祐輝,神奈川大学:「星形フ ラクタルポートを用いたハイブリッドロケットグレ インの局所後退速度」,平成30年度宇宙輸送シンポ ジウム,2018

[4] Michael Creech, Alix Crandell, Nick Eisenhauer, Sarah Marx, Tobi Busari, Austin Link, Jason Gabl and Tiomothee L. Pourpoint : "3Dprinter for Paraffin Based Hybrid Rocket Fuel Grains", American Institute of Aeronautics and Astronautics, 2015

[5] Sanford Gordon and Bonnie J. McBride: "Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications", NASA Reference Publication 1311, 1994