B-11

プリベンディングにより形成されたHP型格子構造に関する基礎的研究

Basic Study on Hyperboric Paraboloid Shaped Lattice Structure Formed by Pre-Bending

○瀬戸謙汰³, 宮里直也¹, 岡田章², 鴛海昂¹ *Kenta Seto³, Naoya Miyasato¹, Akira Okada², Akira Oshiumi¹

Abstract: The lattice shell proposed by Frei Otto is known as a method for easily forming curved surfaces through pre-bending, but it has problems such as the presence of initial stress, the occurrence of overall buckling, and the lack of material options. Therefore, this paper propose a structure that attempts to solve these problems, and examine the basic structural properties of this structure through experiment and numerical analysis.

1.はじめに

Frei Ottoにより提案されたLattice Shellは、 プリベン ディングにより容易に曲面を形成する手法として知ら れているが, 初期応力(N, M, Q, T)の存在, 全体座屈の 発生,部材の選択肢の少なさ,などが問題点として指 摘されている.以上のことから、本報ではこれらの問 題点の解決を試みた架構を提案する. 本架構は、プリ ベンディングにより初期応力を付加した曲げ材を、正 負の主曲率(ガウス曲率:負)を持つ格子状の双曲放 物面(以下,HP曲面と称す)に適用したものである. これにより、格子梁の曲げ抵抗および、HP曲面の形態 抵抗系の特徴を有することで、全体座屈性能の向上が 期待できる.また、本報では格子梁に曲線梁を付加し た主曲率の小さい架構と、HP型ケーブルネット構造の テンション材を曲げ材に置換した主曲率の大きい架構 の中間に値する架構という位置付けでもあると考えら れ、プリベンディングに伴う初期応力による剛性の向 上および,梁断面の薄肉化を図っている.

ウス曲率を持つHP曲面の変形性状が、曲げ材に及ぼす 影響の把握を目的とした検討を行う.

2.実験および数値解析概要

2-1. 実験概要

本架構の変形挙動および破壊性状の把握を目的とし て、鉛直載荷実験を行った.実験概要をFigure 1に示 す.試験体は、実規模の1/50を想定した、600mm四方の モデルとした.HP型のサグ・スパン比(以下「fL」と 称す)は、主曲率の変化による初期応力の影響を把握 するために、0.05、0.10、0.15を設定した.ガウス曲率 が負のHP曲面は非可展開曲面であり、Frei Otto型ラチス シェルが基本とする正方向格子では構成できない.そ のため、本架構ではGrasshopperを使用し、曲面上を通る 交点の算出を行った.梁材交点はM3ボルトで固定、支 持部はM3ナベ頭ビスを用いて、MDF板で構成した剛境 界に固定した.載荷は、トーナメントを用いた全面等 分布載荷とし、破壊が生じるまで行った.荷重はロー ドセル、鉛直変位は巻き込み変位計で測定した.

Table 1 Analysis Specifications

本報では, Lattice Shellの問題点の解決および, 負のガ

1:日大理工・教員・建築 2:日大理工・上席研究員 3:日大理工・院(前)・建築

2-2. 数值解析概要

鉛直載荷時の応力の把握を目的として,数値解析を 行った.数値解析諸元をTable 1に示す.解析モデルは 実験と同様の規模・材料としている.解析モデルの形 状は,平らな梁材の中央に1mmの形状不整を与えて強 制変位を材軸方向に加え,各部材毎にアーチ,パラボ ラ(放物線)を形成し,その後交点に剛体の仮想部材 を挿入することで,格子を形成した.仮想部材は,架 構形成後の交点を曲面内においてピン接合とするため に挿入した.鉛直荷重は,実験結果を参考にして,各 節点に集中荷重として10Nずつ計610N与えた.

3.実験および数値解析結果

3-1. 実験結果

荷重 - 変位関係および初期剛性をFigure 2に示す. な お,鉛直変位は、中央の測定点③~⑥の平均値であ る.また,初期剛性は四辺の長さ600mmの1/200に相当 する3mm変位した時点を基準として算出した.初期剛 性に着目すると、fLが大きいほど剛性が大きくなるこ とを確認した.一方,最大耐力に着目すると、 fL=0.10,0.15,0.05の順に高くなることを確認した.通 常,初期曲げを考慮しない場合、fLが大きいほど耐力 が高くなると考えられるが、今回の実験では、中間で あるfL=0.10の耐力が最も高くなった.これは、主曲率 の違いによる初期応力が影響していると考えられるた め、次項にて詳細を確認する.

3-2. 数值解析結果

数値解析結果をFigure 3に示す.結果では、最も応力 の大きい中央のアーチ、パラボラ部を示し、曲げモーメ ントは面外方向を示している.Figure 3(b)より、載荷後 の軸力に着目すると、fLが大きいほど軸力は小さくなる ことを確認した.次に、figure 3(c)より、曲げモーメント はプリベンディング時、載荷後ともに、fLが大きいほど 大きくなる.また、アーチ部は載荷により曲げモーメン トが小さく、パラボラ部は大きくなることを確認した.

続いて、文献^[1]に基づき、評価式(Figure 3(d))より 算出した応力を用いて比較を行う.Figure 3(e)、(f)よ り、アーチ、パラボラ部ともに、f/Lが大きくなること で、中央部の応力が大きく、端部は小さくなる傾向にあ る.また、アーチ部に比べてパラボラ部のほうが大きい ことから、鉛直下向きの荷重に対しては、パラボラ部が 主に抵抗することが分かる.また、各f/Lのパラボラ部 の応力の最大値は、位置は異なるものの概ね同様となっ た.このことから、軸力と初期応力を含む曲げモーメン トを考慮するとf/Lによらず、同程度の応力が発生して いると考えられる.また、実験においてf/L=0.15に比べ

fL=0.10のほうが耐力が高くなっているが、この原因と して、パラボラ部では一定以上の初期応力を与えると、 耐力への影響が少ないこと、および実験における木材の ばらつきが影響していることなどが考えられる.

5. まとめ

本研究では、プリベンディングにより形成されたガ ウス曲率が負の曲面形態の格子構造を提案し、鉛直載 荷試験及び数値解析を行うことで、基本的力学性状を 把握した. 今後は、座屈を考慮した非線形解析による 検討を行う予定である.

6.参考文献

[1] 村上和夫:「JSCA版木造建築構造の設計」,第2 版, pp. 207-212, 2021