旧耐震基準で設計された RC 造ピロティ建物の軸破壊順序の算定 (その1)研究背景および解析モデルの構築 Calculation of Axial Failure Sequence for RC Piloti-type Buildings Using Old Seismic Standards (Part1) Research Background and Construction of Analytical Model

〇井上惠太¹, 矢幡悠¹, 伊豆川瞬也², 田嶋和樹³, 長沼一洋³ Keita Inoue¹, Yu Yahata¹, Shunya Izukawa², Kazuki Tajima³, Kazuhiro Nagamuna³

Abstract: This study aims to elucidate the mechanism of story collapse of RC buildings using old seismic standard and to develop a reinforcement method to prevent story collapse. Since many cases of story collapse of piloti-type buildings using old seismic standard have been reported in recent major earthquakes, axial failure of columns and axial failure sequence in piloti-type buildings are investigated through numerical analysis.

1. はじめに

日本では、地震被害を受ける度に耐震規定の改訂が 行われ、建物の耐震性能を向上させてきた。一方で近 年の大地震では、1981年以前の旧耐震基準(以下、旧 基準)で設計された鉄筋コンクリート(以下、RC)造 ピロティ建物の層崩壊の事例が報告されており、旧基 準建物の迅速な耐震補強が求められている。

Fig.1 に 2018 年の共同住宅の耐震化率¹⁾を示す. 旧基 準の共同住宅の約3分の1は,未だに耐震補強が実施 されておらず,耐震化が進んでいないのが現状である. 本研究では,1971 年以前に建てられた旧基準建物の層 崩壊を防ぎ,人命を守るための耐震補強方法の構築を 目標としている.基礎段階として,特に被害事例が多 かった旧基準 RC 造ピロティ建物を対象に,柱の軸破 壊順序の算定を試みる.

2. 旧基準 RC 造ピロティ建物モデルの概要

Table1 に耐震規定の変遷を示す.新耐震設計法が施行され,保有水平耐力計算が導入される 1981 年以前の 1971 年に大幅な耐震規定の改定が行われていることが 確認できる.これは,1968 年の十勝沖地震で RC 造建 物の柱のせん断破壊が問題視されたことが要因である. 本研究では,旧基準建物の中でも特に脆性的な破壊の 恐れがある 1971 年以前の旧基準建物を対象に検討を 行う.

Fig.2 に建物モデルの概要を示す. 1971 年以前の旧基 準ピロティ建物を想定した 2×2 スパンの 3 層および 4 層モデルを構築した. コンクリート強度は 13. 5N/mm², 鉄筋の降伏強度は 235 N/mm² とした. また,主筋には 丸鋼を用いて,せん断補強筋間隔は 300mm とした. 外 構面の 2 層以上には腰壁を配置し,剛性差を設けるこ とで,1 層をピロティ層とした.

Fig.1 Percentage of Apartment Buildings that are Earthquake Resistant in 2018¹⁾

	~1971	1971~
Concrete Strength	13.5N/mm ²	(1971~)13.5N/mm ² (1988~)18N/mm ²
Rebar Type	Round Rebar	Deformed Rebar
Stirrup	~ 2D/3 or ~300mm	~ D/2 or ~ 250 mm Stirrup ratio 0.2% ~
Ноор	~ 300mm	~ 100mm Hoop ratio 0.2% ~

Fig.2 Building Model

1:日大理工・学部・建築 2:日大理工・院(前)・建築 3:日大理工・教員・建築

3. 耐震診断結果

Fig.3 に耐震診断 (2 次診断) による1 層の Cr-F 関係 図を示す.3 層,4 層どちらのモデルも構造耐震判定指 標 Iso=0.6 を下回っており既存不適格建物と判定され た.Fig.4 に耐震診断 (2 次診断) による共同住宅の Is 値分布²⁾および3 層,4 層モデルの1 層 Is値を示す.ど ちらも Is 値分布の最頻値付近となっており,モデルの 妥当性を確認できた.

4. 解析モデルの概要

Fig.5 に解析モデルの概要を示す. 解析には数値解析 コード Opensees³⁾を用いた. 柱梁はファイバー要素, 基 礎および柱梁接合部は剛体要素,腰壁は剛性が等価な トラス要素でブレース置換し、スラブは剛床仮定とし た. コンクリートの材料構成則は, Kent-Park モデル⁴⁾を 採用した.鉄筋は bi-linear 型とし,降伏後の二次勾配は 初期剛性の 1/100 とした.1 層の柱には、せん断破壊挙 動を再現するためのせん断サブ要素 5 を挿入した. な お、せん断ひび割れ点およびせん断破壊点のせん断力 は、荒川 mean 式より算出し、その時のせん断変形は Elwood ら のせん断限界状態曲線を用いて求めた.1 層の柱頭柱脚に丸鋼主筋の抜け出し挙動を再現するた めの接合部サブ要素5を挿入した.また、1層の柱にせ ん断破壊後の軸力低下挙動を再現するための軸力バネ ⁷⁾を挿入した.軸力バネは,柱軸力と修正軸限界状態曲 線の位置関係から軸破壊点の検出を行い、最大軸力を 決定する. その後は, 修正軸限界状態曲線上に乗るよ うに水平変形に応じて軸力を低下させ、軸力低下に伴 う軸圧縮変形を与えることで軸抵抗の喪失挙動を再現 する.

5. まとめ

その1では、1971年以前の旧基準ピロティ建物を想 定した2×2スパンの3層および4層モデルを構築し た.また、構築した建物モデルに対して、耐震診断を 行い、その妥当性を確認した.その2では、作成した 解析モデルを用いて動的プッシュオーバー解析を行い、 柱の軸破壊順序についての検証と算定方法の構築を行 う.

参考文献

[1] 国土交通省:住宅・建築物の耐震化の現状と目標 https://www.mlit.go.jp

[2]栗山利男,他:鉄筋コンクリート造建築物の耐震性 能の分布に関する調査研究-構造耐震指標の分布につ いて-,総合都市研究,第68号, pp.5-12, 1999

[3] Open System for Earthquake Engineering Simulation – Home Page, http://opensees. berkeley. edu/

Evaluation

of Apartment Building⁷⁾

Fig.5 Modeling of Structure Using Fiber Elements

[4] Park, Y. J., Ang, A.H. S.: Mechanistic Seismic Damage Model for Reinforced Concrete, Journal of Structural Engineering, ASCE, Vol.111, No.4, April, 1985.

[5]田嶋和樹,他:脆性部材の破壊が RC 造骨組の耐震 性能に及ぼす影響,コンクリート工学年次論文集, Vol. 34, No. 2, pp. 337-342, 2012

[6] Elwood K. J. and Moehle J. P. : Shake Table Tests and Analytical Studies on the Gravity Load Collapse of Reinforced Concrete Frames, PEER-2003/01,2003.11

[7] 蓮池類,他: RC 骨組の局所損傷に起因する層崩壊 メカニズムの解明(その 3)軸力低下バネを考慮した層 崩壊シミュレーション,日本建築学会大会学術講演梗 概集,pp. 395-396, 2019