K-51

火星飛行機の非最小位相特性を抑制する飛行制御系の検討

Investigation of a Flight Control System to Suppress the Non-minimum Phase Characteristics for a Mars Airplane

○宮内天人¹, 久保勇斗¹, 星亮太朗², 和田啓佑², 安部明雄³ *Tenjin Miyauchi, Yuto Kubo, Ryotarou Hoshi, Keisuke Wada and Akio Abe

Abstract: In general, the longitudinal motion of an aircraft is represented by the non-minimum phase characteristics with an unstable zero. The characteristics of a non-minimum phase system initially undershoot in the opposite direction of the target value, resulting in a long settling time. In order to treats this problem, we are designing a control system based on the flatness concept and attempting to improve the characteristics. We describe the results of designing a control system based on the input-output linearization method for the state equation extended using the flatness concept.

1. はじめに

火星飛行機を始め一般に航空機の縦運動は、不安定 零点を有する非最小位相特性で表される. この不安定 零点は、航空機のエレベータ操舵が直接揚力に与える 影響によって生じる. 例えば、水平飛行状態から、エ レベータを下げ舵にすると、水平尾翼の揚力が増加し て一時的上昇してから、頭下げのモーメントにより機 首が下がり降下運動を行う.よって,非最小位相特性 を有する系は、初期に目標値と逆向きのアンダーシュ ートを生じるため, 整定時間が長くなる. また, 不安 定零点は、不安定極のようにフィードバックで安定極 にすることができない.

この問題に対して、文献[1]では、非線形系の不安定 零点の特性に対応する不安定ゼロダイナミクスを有す るシステムに対して, 拡張された状態空間表現を制御 対象として扱うフラットネスの考え方を基に制御系を 設計し、アンダーシュートの特性の改善を試みている. また、文献[2]では、非最小位相特性を有する制御対象 に、フィードバック線形化法と状態量の変換またはタ イムスケール分割を併用した制御系を提案している.

そこで、本稿では、文献[2]の制御対象の定式化を参 考に、火星飛行機の特性を用いて、文献[3]のフラット ネスを利用した制御系の設計を行い、その性能検証を 行った結果について述べる.

2. 火星飛行機の特性

2.1 制御対象のモデル

本稿では、文献[2]を参考に、航空機の縦運動の短周 期モードの簡略化したモデルと2次のアクチュエータ 特性を併せ、(1)式の4次の状態方程式で表す.また、 出力yは機体の鉛直加速度をazとし、(2)式が出力方程 式である.ここで、状態量は擾乱量で $\Delta \alpha$ 、q、 δ_e 、 ξ は 迎角, ピッチ角速度, エレベータ舵角, 舵角の角速度,

入力uはアクチュエータへの指令値である. また, qは 動圧,Sは代表面積,mは質量, $M_{\Delta\alpha}$, M_{q} , $M_{\delta_{e}}$ は有次 元空力微係数, $C_{L\alpha}$, $C_{L\delta_e}$ は無次元空力微係数, ζ , ω_n は アクチュエータの減衰係数と固有角周波数である.

$$\begin{bmatrix} \Delta \dot{\alpha} \\ \dot{q} \\ \dot{\delta}_{e} \\ \dot{\xi} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ M_{\Delta \alpha} & M_{q} & M_{\delta e} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -\omega_{n}^{2} & -2\zeta \omega_{n} \end{bmatrix} \begin{bmatrix} \Delta \alpha \\ q \\ \delta_{e} \\ \xi \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \omega_{n}^{2} \end{bmatrix} u \quad (1)$$
$$a_{z} = -\bar{q}S(C_{L\alpha}\Delta\alpha + C_{L\delta_{e}}\delta_{e})/m \qquad (2)$$

(1), (2)式で,係数行列A,入力係数ベクトルb,状態量 $\mathbf{x} = [\Delta \alpha, q, \delta_e, \xi]^T$ として,次式の略記表現も用いる.

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{A}\boldsymbol{x}(t) + \boldsymbol{b}\boldsymbol{u}(t) \tag{3}$$

$$y(t) = \boldsymbol{c}^T \boldsymbol{x}(t) \tag{4}$$

火星飛行機のための第 2 回高高度飛行試験の機体の特 性より,(1),(2)式のパラメータを Table1 にまとめる^[3].

Table1. 各パラメータと微係数

飛行速度:	V = 170 m/s	飛行高度: h = 34.0 km				
動圧: q	= 208 Pa	大気密度: $\rho = 0.01 \text{ kg/m}^3$				
$S[m^2]$	1.24	$M_{\Delta a}[s^{-2}]$	-128			
m[kg]	6.00	$M_{\delta_{e}}[s^{-2}]$	-43.7			
ζ[-]	0.750	$M_{q}[s^{-1}]$	-0.679			
ω_n [rad/s]	50.0	$C_{L\alpha}[-]$	0.0739			
		$C_{L\delta_e}[-]$	0.0031			

2.2 変換した状態方程式

非線形システムにおける入出力線形化法では、出力 を変換後の状態量を第1成分とし、第2成分以降を出 力の微分量とする.入出力線形化法を参考に,(2),(4) 式の出力を微分し、その2階微分は、次式で表される.

$$y^{(2)} = -(\bar{q}S/m) \{ C_{L\alpha} M_{\Delta\alpha} \Delta \alpha + C_{L\alpha} M_q q + (C_{L\alpha} M_{\delta_e}) \}$$

 $-C_{L\delta_e}\omega_n^2)\delta_e - 2C_{L\delta_e}\zeta\omega_n\xi + C_{L\delta_e}\omega_n^2u\}$ (5)式で、制御入力 u に関する項が表れている. 非線形 システムでは、出力を微分して制御入力に関する陽な 項が表れる階数として相対次数が定義される.この定 義より,(1),(2)式のシステムの相対次数は2 である.

(5)

よって,元の4次のシステムに対して,状態量を変換 後のシステムは2次の線形化されたシステムと2次の ゼロダイナミクス(不可観測部分空間)で表される. ゼロダイナミクスは,零点の特性を表す伝達関数の分 子に相当する特性を表す.そのため,不安定零点を有 する系は,不安定なゼロダイナミクスに相当し,不安 定極との極零相殺により,内部不安定化を招く.

そこで、フラットネスの概念より、元の状態量xに加 えて制御入力とその微分量を、拡張した状態量として 取り扱う.(1)式の4次のシステムに対応させるため、 出力の4階微分を考える.

$$y^{(4)} = -(\bar{q}S/m)[C_{L\alpha}M_{\Delta\alpha}(M_{\Delta\alpha} + M_q^2)\Delta\alpha + C_{L\alpha}M_q(2M_{\Delta\alpha} + M_q^2)q + \{C_{L\alpha}M_{\delta_e}(M_{\Delta\alpha} + M_q^2 - \omega_n^2) + C_{L\delta_e}\omega_n^4(1 - 4\zeta^2)\}\delta_e + \{C_{L\alpha}M_{\delta_e}(M_q - 2\zeta\omega_n) + 4C_{L\delta_e}\zeta\omega_n^3(1 - 2\zeta^2)\}\xi + \{C_{L\alpha}M_{\delta_e}\omega_n^2 + C_{L\delta_e}\omega_n^4(4\zeta^2 - 1)\}u - 2C_{L\delta_e}\zeta\omega_n^3\dot{u} + C_{L\delta_e}\omega_n^2\ddot{u}]$$
(6)

ここで、制御入力uの2階微分uを、新たな制御入力と みなし、uとその1階微分uを含めて拡張した状態量を $x_e = [a_z, \dot{a}_z, \ddot{a}_z, \ddot{a}_z, u, \dot{u}]^T$ とする. (6)式では、変換前の状 態量 $x = [\Delta \alpha, q, \delta_e, \xi]^T$ で表わされているため、次の変換 関係から変換後の状態量に書き換える.

$$\begin{bmatrix} a_z \\ \dot{a}_z \\ \ddot{a}_z \\ \ddot{a}_z \end{bmatrix} = T_1 \begin{bmatrix} \Delta \alpha \\ q \\ \delta_e \\ \xi \end{bmatrix} + T_2 \begin{bmatrix} u \\ \dot{u} \end{bmatrix}$$
(7)

(7)式で、 T_1 , T_2 はそれぞれ4×4と4×2の係数行列を 表し、第1成分の式は(2)式、第3成分の式は(5)式に対 応している.(7)式を変換前の状態量 $x = [\Delta \alpha, q, \delta_e, \xi]^T$ について整理し、(6)式に代入することで新たな状態量 に関する式に直せる.書き直した式を含めて、拡張し た状態量を x_e に関する状態方程式は次式で表わされる.

	$[a_{z}]$		г О	1	0	0	0	0 1	$[a_{z}]$		ך 0 ק	
	\dot{a}_z		0	0	1	0	0	0	\dot{a}_z		0	
d	ä _z		0	0	0	1	0	0	ä _z		0	1.
dt	<i>ä</i> z	_	a_{t41}	a_{t42}	a_{t43}	a_{t44}	a_{t45}	a _{t46}	ä _z	Ŧ	b_{t4}	u
	u		0	0	0	0	0	1	u		0	
	- ù -		L O	0	0	0	0	0	L _ü J		1	
											(8	3)

3. 制御性能の検証

本節では,(8)式のモデルを基に,エレベータ舵角が 直接揚力に与える影響を表す微係数*C_{Lδe}を*無視した設 計を 3.1 項,考慮した設計を 3.2 項に示す. 3.1. 微係数*C_{Lδe}を*無視した制御系設計

 $C_{L\delta_e} = 0$ とすると、(6)式で制御入力の1階微分uと2 階微分uの係数が零となり、相対次数が4のシステムとして、(8)式が次のように再定式化できる.

$$\frac{d}{dt} \begin{bmatrix} a_z \\ \dot{a}_z \\ \ddot{a}_z \\ \ddot{a}_z \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ a'_{t41} & a'_{t42} & a'_{t43} & a'_{t44} \end{bmatrix} \begin{bmatrix} a_z \\ \dot{a}_z \\ \ddot{a}_z \\ \ddot{a}_z \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ b'_{t4} \end{bmatrix} u \quad (9)$$

制御則は,非線形系のフィードバック線形化法に準じて,機体の動特性を相殺するように次式を用いる.

$$u = b'_{t4}{}^{-1} \{ -(k'_1 + a'_{t41})a_z - (k'_2 + a'_{t42})\dot{a}_z - (k'_3 + a'_{t43})\ddot{a}_z - (k'_4 + a'_{t44})\ddot{a}_z \}$$
(10)

ゲイン $k'_{()}$ は、閉ループ極が $s = -38 \pm 38j, -12 \pm 12j$ となるように決定した.

3.2. 微係数CLoeを考慮した制御系設計

(8)式のモデルを基に, 3.1 節の同様の設計を行うと, 制御則は次式で表される.

$$\ddot{u} = b_{t4}^{-1} \{ -(k_1 + a_{t41})a_z - (k_2 + a_{t42})\dot{a}_z - (k_3 + a_{t43})\ddot{a}_z - (k_4 + a_{t44})\ddot{a}_z - (k_5 + a_{t45})u - (k_6 + a_{t46})\dot{u} \}$$
(11)

ゲイン $k'_{()}$ は、閉ループ極が $s = -55 \pm 55j, -12 \pm 12j, -1, -2$ となるように決定した. Figurel に、初期値 $a_z(0) = 0.2$ Gとして、3.1 項と 3.2 項の手法をオレンジ と青で示す. 3.2 項の手法で初期に逆応答を示している.

4. まとめ

本稿では、火星飛行機の特性を例に、非最小位相特 性を有する機体の、入出力線形化法を基にした制御系 の検討を行った. 微係数*C_{Lδe}の影響を考慮するかどう* かで、相対次数の値が変化し、フラットネス用いて拡 張した状態方程式に基づく設計も併せて示した.

5. 参考文献

[1] Hauser, J., Sastry, S., and Meyer, G.: Nonlinear Control Design for Slightly Non-minimum Phase Systems: Application to V/STOL Aircraft, Automatica, 28(4), pp. 665-679, 1992.

[2] 馬場順昭, 高野博行: 非線形逆ダイナミクスを用いた飛行制御, 日本航空宇宙学会誌, 47巻, 547号, pp. 18-24, 1999.

[3] 安部明雄, 布田翼:火星飛行機のための高高度飛行 試験 MABE-1 の機体の運動特性について, 日本航空宇 宙学会論文集, 71(3), pp. 149-156, 2023.